

Mitigating Track Buckling from Heavy Train Braking **Using Automated Alerts**

Dylan Gareau

HEAVY HAUL SEMINAR · JUNE 23 - 24

CP WRI 2022

CP

Outline

- Introduction
- Background Track Buckling
- Heat from Train Braking
 - Data Collection and Analysis
 - Key Takeaways
- Solution Development and Automated Alert Implementation
- Future Considerations

Background – Track Buckling

- Track buckles pose a significant risk to trains derailing in CWR territory
- Factors typically:
 - Longitudinal Forces
 - Compressive force from rail expansion typically caused by heat
 - Lateral Forces
 - Required impetus to trigger the buckle
 - i.e. dynamics from train handling

Background – Track Buckling

- Track components restrain these forces
- When the forces are released, track buckles occur

HEAVY HAUL SEMINAR · JUNE 23 - 24

Photo source: https://www.newcivilengineer.com/latest/roads-melt-and-rail-tracks-buckle-as-uk-heatwave-strikes-27-06-2018/

Background – Heat of Rail from Trains

Heating Source Addressed:

• Trains passing over rail add heat

Previous evidence of rail temperature being raised by trains passing:

- Anecdotal and recorded incidents
- Track buckles/sun kinks reported following multiple heavy trains descending steep grades

HEAVY HAUL SEMINAR · JUNE 23 - 24

Photo source: https://jesstopper.wordpress.com/2012/04/21/s-is-for-sun-kink/

Data Collection – Summer 2021

- Sensor setup:
 - 10 magnetic rail temperature sensors
 - Placed in the web of the rail
- Two months of data: August and September

Wireless Temperature Sensor

Data Collection – Summer 2021

- Test Location Adjacent to Hot Box Detector (HBD): Grade: 2%
 - Descending for ~7 miles prior

HEAVY HAUL SEMINAR · JUNE 23 - 24

CP WRI 2022

Study Results

Study Results

• Increases in rail temperature directly correlate with temperature of the train brakes

Study Results

• Sunlight amplifies the effects of ambient heat

Back-to-back Trains: Example #1

HEAVY HAUL SEMINAR · JUNE 23 - 24

CP WRI 2022

Back-to-back Trains: Example #2

HEAVY HAUL SEMINAR · JUNE 23 - 24

CP WRI 2022

Trends: Train Temperature vs Tonnage

- Heat transfer to the rail increases with tonnage
- Stronger correlation than wheel temperature

Trends: Wheel Temperature vs Tonnage

- Heat transfer to the rail increases with wheel temperature
- Weaker correlation than against tonnage

Measured Temperature Increases

- Highest recorded rail temperature: **136.4°F**
 - Ambient Temperature: 81°F

- Trains above 16500 tons add **10°F** to **20°F**
 - Amplifies in sunlight, up to 30°F
 - Worst case: 41°F

Higher magnitudes than expected

Thermal Expansion

• Calculating thermal expansion in unrestrained rail:

```
\Delta L = L (inches) \times \Delta T \times e
```

- Where ΔL = rail expansion or contraction in inches
 - *L* = rail length in inches
 - ΔT = temperature differential in °F
 - and e = coefficient of rail thermal expansion

Heat Added	from Braking	Rail Expansion Inches per Mile
5.55°C	10°F	4.1
11.11°C	20°F	8.2
16.67°C	30°F	12.3
22.22°C	40°F	16.3

• Need to restrain up to <u>16 inches</u> of expansion in a mile from train heat alone

More Key Results

- Back-to-back heavy trains (within 30 minutes) added typically 40°F
 - Worst cumulative increase was 52°F
- Majority of the transient heat is dissipated within 1 to 3 hours
- No significant heating effects from:
 - Ascending trains
 - Lower tonnage trains

Heavier, descending trains brake more and add more heat.

Risk of Cumulative Heat

• Rail Temperature Example:

HEAVY HAUL SEMINAR · JUNE 23 - 24

CP WRI 2022

An Ongoing Risk

• Major factors leading to increased rail temperature:

HEAVY HAUL SEMINAR · JUNE 23 - 24

- Rising global temperatures
- Increasing train tonnage
- Heavy grades

Source: climate.nasa.gov

GLOBAL LAND-OCEAN TEMPERATURE INDEX

Generating Solutions

- Increase track resistance to track buckling \rightarrow Improve track infrastructure
- Increase the rail neutral temperature \rightarrow Lay the rail at higher temperatures

- Costly and Network-wide Changes
- Time-consuming
- Need a short-term solution:
 - How can we mitigate this risk using existing infrastructure?

Further Solution Development

- Proposed Solution:
 - Utilize existing HBD coverage as a network to monitor ambient temperature and trains
- Target Key Conditions:
 - Heavy grades
 - High ambient temperature
 - Heavy trains back-to-back

Future Considerations

- Optimization of alert algorithms
- Improvements with tracking trains
- Improvements to wayside detectors
- Track improvements to resist forces

End

Questions?

